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Comment on Bifurcations in Fluctuating Systems 
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We prove, using normal form techniques in a codimension one bifurcation, that 
the conditional probability of the fast variable conditioned by the slow variables 
is a Gaussian distribution centered in the center manifold. 
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center manifold. 

In Ref. 1 an interesting method is proposed to eliminate the fast variables 
near a bifurcation point in a system of stochastic differential equations. The 
case of a codimension one instability (one eigenvalue zero of multiplicity 
one) is treated in detail for systems with two variables U 1 and U2. The 
technique consists in working with the associated Fokker-Planck equation 
for the probability density pt(U1, U2)  and postulating that this function 
admits the decomposition 

pt(U,, U2) = exp{ - F ( U I ) [ U  2 - - F ( U I ) ] 2 }  �9  (1) 

where UI is the critical variable corresponding to the eigenvalue zero, U2 = 
F(U l) is the equation of the center manifold, and the width F(UI) of the 
Gaussian is determined by a self-consistency condition as a power series in 
U1. The probability density fi,(U1) obeys a reduced Fokker-Planck 
equation, which is calculated. However, it is necessary for the consistency 
of the method that the width F(UI) be a positive function of U1 and it is 
this point that we shall discuss here. In Ref. 1, F(U~) was expanded up to 

Facultad de Ciencias Fisicas y Matem/tticas, Universidad de Chile, Santiago, Chile. 
2 Physique Th6orique, Universit6 de Nice, Parc Valrose, 06034 Nice, France. 

Facult6 des Sciences, Universit6 Libre de Bruxelles, 1050 Bruxelles, Belgium. 

925 

0022-4715/87/0800-0925505,00/0 �9 1987 Plenum Publishing Corporation 



926 Elphick et  al. 

linear terms in U1 and the positivity was tacitly admitted. We shall prove, 
using the same normal form techniques of a previous note, (2) that the 
decomposition (1) holds with F(U1)> 0 provided that quadratic terms in 
the critical variable UI are retained. The method is a generalization to the 
stochastic case of some of the results obtained in Ref. 3 for the normal 
forms of singular vector fields. 

We consider a vector U(t)=(U1, . . . ,  Uu) that satisfies a system of 
stochastic differential equations (we use the notations of Ref. 2). 

O tU= LU + ~ N(')(U)+17 ( D ( t ) +  LO'(t)U + ~ M(r'(t; U ) )  (2) 
/ 

where U =~-~c~=lN U,e~, e ~ = ( 1 , 0  ..... 0), eu = (0,...,0, 1), L is a diagonal 
matrix Le~=y~e, ,  71=0,  y~<0,  ~ > 2 ,  L(1)(t) is a matrix with elements 
L(1)(t),~, D(t)  -'~-N- ~=1 D~(t)e~, and 

N~')(U) = ~] u ~') U . . .  Us e~ 
~,~j 

M(r)(z; U ) =  E ~)~1 ....... ( t )  V~l '*" Votreo~ 
~,~j 

Here D~(t), L(~)(t)~, and v(~)~ ....... (t) are Gaussian white noises with zero 
means and given correlations and r/ is the parameter measuring the 
intensity of the noise. In particular D(t)  has correlations 

( D~(t) D~(t') ) = Q~ab(t- t') 

The probability density pt(U1, U2, . . .  , UN) solution of the Fokker-  
Planck equation associated to (2) can be written as p,(U2,..., UNI U1) 
p,(U~), where the first factor is the conditional probability of (U2,..., UN) 
given U1. We shall prove that this conditional probability can be taken for 
times t>> [7~1-1, ~ >/, 2, as a time-independent Gaussian distribution cen- 
tered at the center manifold and with width depending on U1, and also 
that Ul(t) satisfies a closed stochastic differential equation, i.e., /~t(U1) 
obeys a Fokker-Planck equation. The adiabatic elimination in (2) is done 
using the following ansatz (which we discuss at the end of this note): U is 
expressed asymptotically (for times t >> [y~[-1) in terms of a critical variable 
C which obeys an autonomous equation. In formulas (up to first order 
in r/) 

N N 

u= E Z E E (3) 
r>~l c~=1 r>~O c<=1 

8tC= ~ fe~3Cr+tl ~. gEr](t) cr (4) 
r>/1 r>~O 
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The unknown constants { U~ ~1, f i r ]  } and the unknown stochastic processes 
{V~3(t), gE~3(t)} in (3) and (4) are calculated by replacing (3) in the 
original equation (2) and using (4). (2'3) One obtains then, equating both 
sides of (2) at each order [j, r], where j = 0  or 1 is the order in r /and r is 
the order in C, a sequence of homological equations for the unknowns. In 
order [0, 1], Eq. (2) is satisfied with the choice U~[1]=6~1, f i l l = 0 .  In 
order [0, r], one obtains an equation 

--7~ U~ ~3 = I~ ~3 -f[r]0el (5) 

where I[~ r] depends only on { UJ "3, fE,3 } for s < r, which tells us that we can 
solve these equations by recursion in r to obtain 

f i r ]  -= i[r?, U1 t~3 = 0 ,  U~ r] = --~,~-llt~?.~ , ~ >~ 2 

At the lowest order [0, 2], one has 

f[2]_U(2) U[23 _,,-a,,(2~ _-p~ e>~2 
- -  1;11~ ~ lc~ ~cc;11 

In this way we have determined the unknown constants in the q-indepen- 
dent part of (3) and (4) and we have UI=C (since U[~3=O, r>~2), U~= 
F~(C)+O(q), ~>~2, OtC=f(C)+O(q),  where {F~(C),f(C)} are now 
known as formal power series in C. We consider now the terms of order 
[1, s], s ~> 0, and we obtain the equations 

(6) 

where J~'3(t) depends on {U~ k3, k ~ < s + l ;  frkj, k ~ s } ,  which we know 
already, and on { V~k3(t), gtk?(t); k < s}. Note that since we are calculating 
in the first order in q, the J~t'3(t) are linear in V~k?(t) and gtk3(t). For 
instance, for s = 1 one has 

N 

J~[1J(t) = 2 Z u~,2;)lp Vf~ + L(1)(t)~l -- 2(1 -- 6~1) p~ gC~ 
B = l  

(7) 

Since ~ = 0, we choose to solve (6) for c~= 1, putting gE~(t)= j[sl(t)  and 
VfSl(t) = 0. Then 

N 

gE~ ), gEl?(t)=2 ~ u (2) vE~ etc. 1 ; l e  --ct k ! 

Next we consider Eqs. (6) for 2~<a~<N and for s up to some fixed r 

822/48/3-4-36 



928 Elphick e t  aL 

(0 <~ s 4 r). It is easy to see that these equations are of the form (2 ~< ~ ~< N, 
O<<.s<.Gr) 

s- - I  N 

(O,--7~) V ~ J ( t ) - -  Y ', Z ~ E~ - ~ a,~ V~ ( t ) -  {~(t) (8) 
k = 0 f l = 2  

where ~ ( t )  is a white noise [a linear combination of the original white 
noises in (2)]. For  s = 1 one has 

o _ _2U(2) 1 _ a~ -- ~;,t~' ~ -- --2p~D,(t) + L(')(t)~, (9) 

Up to O(~/C ~) Eqs. (2) are then replaced by (6) together with 

U, = C (I0) 

m~-=F=(C)+q ~ C~V~a(t) (11) 
s = 0  

O,C=f(C)+q ~ C~gE~l(t) (12) 
s=O 

where in (12) each gt~(t) depends linearly on the original white noises in 
(2) and on {V~k~(t), k<s} solutions of (8). 

From (10) and (11) we see that U~=F~(U~) is the equation of the 
VCOl = V~~ = V~ll,..., q, = V~ d, center manifold. Putting q l =  2 , q2 qu 

where n =  ( r +  1 ) ( N - 1 ) ,  we can write the system (8) in the form 

flu(t)- ~ Au~q~=~u(t ), l <<.#<~n (13) 
v = l  

where the n x n matrix Au~ has zero elements above the diagonal and Au = 

72, '" ,  A N N ~ -  ])2,'", Ann-m- ~N, i.e., 
N 

det(A - 2) = I-] (7, - ;~)~+ ~ 
~ = 2  

and all its eigenvalues are negative. In (13) the ~u(t) are white noises with 
known correlations 

<G(t) ~,(t')> = Ruva(t-  t') 

Then we solve (13) in the stationary state that exists (7~<0) and the 
probability p,(q,,..., q,) is time-independent and given by (4) the Gaussian 
distribution 

1 ) 
P(q) = [(2~)" det E]  '/2 exp - ~ quZ~lqv (14) 

,u,v = 1 
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~here the symmetric, positive-definite (generically) matrix = satisfies 
ZA r +  A 3 +  R = 0 (A r is the transposed matrix of A and R the matrix of 
elements R,~). Using now (i 1 ), we can calculate the conditional probability 
p(U2,..., Uzvl C), which is given by 

where )~ 

where 

p(v2,..., V lC)=f (I fi dv sJ (v 0 , ..... 
s ~ 0  c x = 2  

~ = 2  s = 0  

=-- U~-F~(C). We make now the change of variables 

(ql  . . . . .  qn) = (V~ ~ ..... VOw ~3) --* (q'~ ..... q'n) 

-- ($2, $3,-.., SN, r i l l ,2 V[31],''', V[N r]) 

V~~ - ~ CsV~ sJ, 2<~<~N 
s ~ l  

The Jacobian is one and put t ing/~(q ' )=p(q) ,  we obtain from (15) after 
integration over (s2,..., SN) the expression 

. . . . .  r? 
s = l ~ = 2  

We note that fi(q') is still a Gaussian distribution ( q ~ q '  is a linear 
transformation) and then the last integral in (16) is just the marginal 
distribution of a Gaussian and consequently is a Gaussian in the variables 
(22/r/ ..... 2N/q), which we write as 

1 
p ( U  2 ..... UNI C)--~ r/N_ 1 [_(27.c)N_ 1 det A(C)] 1/2 

• exp [ 

I 

2r/2 ,~__2 2~A(C)~1 2~] (17) 
1 N 

where the positive-definite ( N -  1) x ( N -  1) matrix A(C) is a function of C. 
The lowest order approximation corresponds to considering Eqs. (8) for 
r = 0, in which case they reduce to 

(~t -  7~) V~~ = O~(t) (18) 
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and one obtains for A(C) the constant matrix A~#=6~Q~(2  17~[) -x, a 
result also obtained in Refs. 2 and 5. 

Using now (17), we have the following form for the probability density 
of the initial problem (2): 

pt(U1,..., UN) 

1 
[(2/rr/2)N-- 1 det A(U1)] m 

x exp 2t/2~,~ [Ua-Fc~(U1)] A(U1)~-31[UB-FB(U1)] P t ( g l )  

(19) 

with p,(C) (we recall U~ = C) the probability density of the process defined 
by (12). We note that (18) is valid for times t >  sup [7~1-1, ~>~2, which is 
the condition of validity of our original ansatz (3) and (4). It should also 
be remarked that at this stage (12) is not a closed equation for C, since 
g[~](t) depends on the original white noises in (2) and also on { V~k](t), 
2<~<<,N, k<s} [see after formula (7) for g[~ and g[1](t)]. However, 
for times t > s u p  17~[-1 we can make a consistent white noise 
approximation as follows. 

We first integrate (18) with initial conditions at t = -0% since we are 
in the stationary state [see (14)] 

f 
t 

V~~ = e~t -oo dt' e-~'CD~(t ') (20) 

and we remark that for t >  17~1-1 we can replace V~~ -* 17~1-i D~(t) (see 
also Ref. 6). Then in Eqs. (8) for s = 1 we use this replacement to obtain 

N 
( ~ t - 7 , )  V~l](t) = 2  ~ u(~2;l~ [7~[-1D~(t) 

+ L(l)(t)~l-2p~Dl(t)=-D(~l)(t) (21) 

where D(~l)(t) is a white noise. Integrating (21) as in (20), we can replace 
now V~l](t) --* I7,J-1D(l)(t) and we can proceed to write (8) for s = 2  and 
so on. In this way we obtain from (12) an ordinary stochastic differential 
equation for C in which all the gt'l(t) are expressed in terms of the original 
white noises in (2). 

In order to see how all this works, we give now the explicit 
calculations for N = 2 ,  r = l .  Then Eqs . ( l l )  reduce to U2=F2(C)+ 
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tl(V~~ + CV~t3(t)) with Fz(C) = pC 2 + O(C'), p = I7l -~ u(22;~x (putting 
Y =72), and Eqs. (13) become 

0 , -  Yq, = ~,(t), (t2--Tq2-aq~ = {2(t) (22) 

where a = 2u(22~2 and if we only have additive noise in (2), ~ l ( t )=  D2(t), 
~2(t) = -2pD~(t), which gives 

R11 = Q22, Rl2 = -2pQ12, R22 = 4p2Q11 

The matrix =uv~ in (14) is of the form (2 I~1) -~ "~, with 

a 

= Rn ,  ~12 = R12 + ~ Rll ~11  

a R a2 
(23) 

and one easily checks that it is positive definite. Finally, (15) gives 

l ~" [U2~A__~- F2(c)]Z'~J 
p(U2 I C) = [27tr12A(C)]1/2 exp I . -  (24) 

with A(C)=s  +2C~12+ C 2 ~ , ~ 2 2 > 0  , since ~u~ is positive definite. This 
case is explicitly treated in Ref. 1 using as an assumption that p(U2 [ C) is a 
Gaussian of the form in (1) [-see formula (3.6) of Ref. 1], then developing 
F ( C ) = F o + F ~ C + O ( C )  and determining F o and F~ by direct 
replacement in the Fokker-Planck equation associated to (2). One obtains 
then 

v(c)= 1 
2r/2~n ZI~/ 

(25) 

which indeed coincides with (24) when we develop there A(C) up to order 
O(C). However, in order to have A(C) positive definite, the first correction 
to the leading order [which is A(C)= ~11 in this case] must be quadratic 
and this follows naturally from the method exposed here. We remark that 
in the above reasoning no explicit statement on the order of magnitude of 
C is made. If we make the additional assumption that C is small in the 
vicinity of the bithrcation point and the concomitant restriction for the 
normalized probability distribution, then for the positivity of A(C) it is 
sufficient to ensure that A(C- -0)  is positive definite, which also follows 
from our analysis. 

We discuss now briefly the ansatz (3) and (4). In order to study (2), 
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we look for a nonlinear change of variables (U1 ..... UN) ~ ( C  1 ... . .  CN) of 
the form (up to first order in t/) 

N 

U =  Z C~%+ ~ UCrJ+t/ Z VCrl(t) (26) 
~ = 1  r ~ 2  r>~O 

Here U Eq [respectively VE~](t)] is of order r in (C1 ..... CN) with constant 
coefficients to be determined (respectively, with coefficients that are 
stochastic processes to be determined). In the new variables Eqs. (2) take 
the form 

c~,C~=GC~+ Z F~Er]+r/ ~ G~](t) (27) 
r~>2 r~>0 

where F~ r] [respectively, G~r](t)] is of order r in (Ct,..., CN) with constant 
coefficients to be determined (respectively, with coefficients that are 
stochastic processes to be determined). To determine the unknown quan- 
tities, we proceed as before with the ansatz, i.e., we replace (26) in (2) and 
consider the equations obtained at each order [j, r], where j is the order in 
t/and r is now the order in (C1,..., CN) (see Ref. 7, where the calculation is 
done in detail in the case of the Hopf bifurcation). In this way one obtains 
the set of homological equations (see Ref. 3 for the deterministic case) 

N 

(F- -L)  UEr1=i ~ q -  ~ F~rle~, r>~2 (28) 

N 

(a,+F-L)VE~J(t)=]E~(t)- ~ G~E'1(t)%, r~>0 (29) 

where 8 t acts only on the time dependence of the coefficients in vEr](/) and 
N 0 

F =- ~ 7~C~oc~ 
0~=-2 

We determine now the unknown {F~ r~, GCj~(t)} in such a way as to be able 
to solve (28) and (29) for {U r~, vCr~(t)}. In (28) we impose that the right- 
hand side belongs to R a n ( F - L )  (solvability condition) and in (29) we 
impose that the stochastic processes V[~l(t) admit a stationary solution. 
One finds then that this gives the following normal form for the system 
(assuming nonresonant conditions between the eigenvalues 7~ (3,8)): 

a rCl= ~ fEr](C1)r+r/ ~ gEr](t)(C1)r 
r ~ 2  r ~ O  

r~>2 r~>0 

(30) 

~ ) 2  (31) 
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i.e., we recuperate Eq. (12) for C1 = C and we obtain the normal form of 
the equations for the C,,  e/> 2. Since in these equations we have C, in fac- 
tor (i.e., only multiplicative noise appears), C~ = 0 is an invariant manifold, 
the center manifold, to which the variables Ca relax for t ~  sup 17~1-1 [the 
stationary probability will be pst(C,)=6(C~)] and we can put C~=0,  
e ~> 2, in (26) and we recuperate the ansatz (3) expressing U as a function 
of C. A detailed study of these methods for a general bifurcation of 
arbitrary codimension will be presented elsewhere. 

We finally remark that in our calculations we have assumed that the 
original system (2) was to be interpreted in the Stratonovic sense and con- 
sequently we have used the normal rules of calculus. This is no restriction, 
since if the interpretation is the Ito or some intermediate one, we can 
always rewrite the equation as a Stratonovic system, using, for instance, the 
techniques in Ref. 9. 
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